

	
		Skip to content	

	
		
			
										JEB in Action

												JEB Decompiler Blog

										Menu and widgets
			

		

			

					
					PNF Software (Main)

			
		
		
					
				
				
					Search for:
					
				
				
			

		
		Last Posts

			
					Generic Unpacking for APK
									
	
					How To Use JEB – Auto-decrypt strings in protected binary code
									
	
					How To Use JEB – Analyze an obfuscated win32 crypto clipper
									
	
					JEB Assistant
									
	
					Control-flow unflattening in the wild
									
	
					Recovering JNI registered natives, recovering protected string constants
									
	
					Android JNI and Native Code Emulation
									
	
					IR and AST Optimizers in Decompilers
									
	
					Reversing dProtect
									
	
					Dart AOT snapshot helper plugin to better analyze Flutter-based apps
									

		Categories

				Android

	API (JEB1)

	API (JEB2)

	API (JEB3)

	Assistant

	Collaboration

	Dart

	Debugging

	Decompilation

	Ethereum

	Flutter

	JEB2

	JEB3

	JEB4

	JEB5

	Malware

	Native Code

	Obfuscation

	PDF

	PLC

	Tutorial

	WebAssembly

			Archives

				February 2024
	January 2024
	December 2023
	August 2023
	April 2023
	December 2022
	November 2022
	June 2022
	May 2022
	June 2021
	March 2021
	February 2021
	July 2020
	June 2020
	April 2020
	February 2020
	October 2019
	July 2019
	May 2019
	April 2019
	March 2019
	January 2019
	November 2018
	October 2018
	September 2018
	July 2018
	May 2018
	February 2018
	November 2017
	October 2017
	August 2017
	June 2017
	May 2017
	April 2017
	October 2016
	September 2016
	June 2016
	April 2016
	March 2016
	February 2016
	December 2015
	November 2015
	October 2015
	September 2015
	August 2015
	July 2015
	June 2015
	December 2014
	August 2014
	April 2014
	March 2014
	December 2013
	September 2013
	August 2013
	July 2013
	June 2013
	May 2013
	April 2013
	March 2013

			
Main Website

	
			

		
	

	

	

	
		

		

	
	
		Scanning PDF Files using JEB2
	

	
		Update (9/13/2017): we open-sourced the PDF plugin. A compiled JAR binary is also available.

Update: Feb. 27: Slides – Automation How-To

Update: Dec. 3: List of notifications

In this blog post, we show how JEB2 can be used as a building block of a file analysis system. We will show how to use the Core API to create a headless client. That client will scan PDF files using the JEB2 PDF Analysis Module. Basics of the IUnit and co. interfaces is also demonstrated.

Source code on GitHub.

Sample execution output produced by the PDF Scanner
As this slide deck shows, the back-end and front-end components of JEB2 are separated. The official RCP desktop client uses the JEB2 Core API; other front-ends, like the PDF scanner, can be built using that same API.

JEB2 HL Architecture Diagram
Creating an Eclipse project

Let’s get started by creating a new code project. We will show how to do this in Eclipse.

0- Check your license of JEB2. Make sure to use a license that supports third-party client creation and the loading of third-party plugin. If you haven’t done so, download and drop the PDF module in your coreplugins/ sub-directory.

1- Clone our sample code repository: git clone https://github.com/pnfsoftware/jeb2-samplecode.git

2- Create a new Java project. The Java source folder should be rooted in the src/ directory.

3- Add the JEB2 back-end as a JAR dependency. The back-end software is contained in the file bin/cl/jeb.jar located within your installation folder. You may also want to link that JAR to the API documentation, contained in the doc/apidoc.jar file, or online at https://www.pnfsoftware.com/jeb/apidoc

Your Package Explorer view should now look like:

Package explorer view after setting up dependencies
5- Set up the execution options. The required Java properties for execution (jeb.engcfg and jeb.lickey) can be set in the Run Configurations panel (accessible via the Run menu). Example:

Example of a Run configuration
6- Open the com.pnf.pdfscan.PDFScanner source file. You are ready to execute main().

How the scanner works

Now, let’s focus on the scanner source code.

	The JEB2 back-end is initialized when scanFiles() is called:
	Use JebCoreService to retrieve an instance to ICoreContext
	Create an IEnginesContext
	Load a project within that context (IRuntimeProject)
	Add artifact(s) and process them (ILiveArtifact)
	We add a single file artifact per project in this example

	Retrieve the products (IUnit)
	We are retrieving the top-most unit only in this example

	Analyze the unit (see assessPdf())
	Close the project

[Note: A detailed explanation of the above concepts (core, engines, project, artifacts, units, etc.) is outside the scope of this tutorial. Refer to our Developer Portal for more information.]

Snippet of scanFiles()
The assessPdf() method evaluates PDF units. The evaluation performed by this sample scanner is trivial: we collect the notifications created by the PDF plugin during the analysis of the file, and see if they meet basic criteria.

About the Unit Notifications:

	Any JEB2 plugin can attach notifications to its units. The PDF plugin does so. Notifications are meant to pin-point noteworthy areas of a unit or artifiact.
	A notification has a “dangerosity level” ranging from 0 to 100. It also has a description, an optional address to point to which area of the unit the notification is associated with, etc.
	The API offers standard notification types, ranging from “Interesting area” to “Definitely Malicious”.

Standard notification levels offered in the NotificationType enum
A PDF unit can contain several types of notifications. Example include: corrupt areas in stream; multiple encoding of stream; JavaScript; password-protected stream; invalid/illegal entries in stream; etc.

Link: Complete list of notifications issued by the PDF plugin.

Our simple scanner reports a file as suspicious if it contains at least 2 notifications that have a level >= 70 (POTENTIALLY_HARMFUL). These thresholds can be tweaked in the source code.

The assessPdf() routine
The screenshot below is a sample output produced by the PDF scanner:

Conclusion

The intent of this entry is to shed some light on the process of writing third-party clients for JEB2, as well as what and how to use notifications reported by Units. We encourage you to visit our Developer Portal to find additional documentations as well as the reference Javadoc of the API.

	

	

	Published by

	
			

	
		Nicolas Falliere

		
			Author of JEB.			
				View all posts by Nicolas Falliere			
		

	

	
		Posted on December 1, 2015September 13, 2017Author Nicolas FalliereCategories API (JEB2), JEB2, Malware, PDF			

	
	
		
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name

Email

Website

The reCAPTCHA verification period has expired. Please reload the page.

CAPTCHA Code *

Δ

	

	

	
		Post navigation

		Previous Previous post: Writing client scripts for JEB2 using Python
Next Next post: Changes in JEB 2.1… And a holiday season gift

	
		
	

	

	
		
									
				Proudly powered by WordPress			
		

	

